高中向量定比分点坐标的问题
因为 P 分有向线段 P1P2 所成的比为 1/2 ,所以 向量 P1P=1/2*PP2 ,即 OP-OP1=1/2*(OP2-OP) ,解得 OP=[OP1+1/2*OP2]/(3/2)=(1+2,2+1)/(3/2)=(2,2) ,即 P 点坐标为 (2,2)。
向量的定比分点公式可以表示为(AB:CD)=(AC:BD)。资料扩展:定比分点公式一般指有向线段的定比分点的坐标公式,是平面几何和解析几何的基本公式。定比分点公式不仅在解析几何中有十分广泛的应用,还可以用它解决代数问题,它是我们推导公式、计算、证明问题常用的基本公式。
解:设M(x,y)是线段AB的分点,其中A点的坐标为(x,y),B点的坐标为(x,y)1). AM/MB=λ,其中M是“分点”,λ是“定比”。
若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式。
设向量OP1=a(向量),向量OP2=b(向量),向量OP=p(向量),向量P1P=λ2*向量PP则,p=(a+λb)/(1+λ) ---向量的定分点公式。 【λ≠-1】当 λ=1时,即得中点的坐标公式:p=(a+b)/或,向量OP1=(向量OP1+λ*向量OP2)/(1+λ). ---向量的定分点公式。
已知p1(3/4,1/2),p2(3,2)且向量p1p=3/4向量p2p,则p点坐标
矩阵的秩:在矩阵中有一个不等于0的r阶子式D且所有r+1阶子式全等于0,这个r就是秩了。
平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
转载请注明:乐动·LDSports(中国)体育官网 » 比赛数据 » 定比分向量,定比分点的向量公式洋葱数学
版权声明
本文仅代表作者观点,不代表B5编程立场。
本文系作者授权发表,未经许可,不得转载。
发表评论